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Abstract 

THE EFFECTS OF GENOTYPE AND SPATIAL SCALE ON THE ASSOCIATED 

POLLINATOR COMMUNITY OF SOLIDAGO ALTISSIMA. (August 2016) 

Julie Anna Ragsdale 

B.S., Appalachian State University 

M.S., Appalachian State University 

Chairperson: Ray S. Williams 

Plant-pollinator interactions are among the most important mutualisms, as pollination 

is a necessary ecological service that contributes to the maintenance of biodiversity and 

ecosystem functioning. The plant Solidago altissima has been used to observe the effects of 

intraspecific genetic variation on arthropods, though pollinators have largely been ignored. 

My thesis research examines the relationships between phytochemistry, spatial scale and the 

pollinator community in S. altissima. I was interested in the trait variation within and 

between fields so that the role of genetic variation within patches (genetic identity effect) 

could be compared to effects of spatial scale (environment effect). I expected to find 

differences in both terpenes and the pollinator community between genotypes, and that there 

would be a greater impact of plant genotypic variation on the associated insect pollinator 

community of S. altissima partly due to terpenes. 

I used four established populations of S. altissima as my sites and marked four 

patches within each site to observe during my pollinator surveys. Surveys lasted 5
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minutes each and were conducted three times per patch throughout the blooming period. At 

the conclusion of the pollinator surveys, I collected inflorescences from all plants within each 

patch. Terpenes were extracted from flowers and analyzed using gas chromatography. 

Additionally, a small number of samples were analyzed to observe differences in terpenes 

between the flower and calyx. I collected soil cores from each patch to analyze soil nitrogen 

and the nitrogen to carbon ratio. I used one-way ANOVA to partition the effects of site from 

genotype in a general linear model. I used simple linear regression to find any potentially 

meaningful relationships between the pollinator community and terpenes. I also used partial 

least squares regression (PLSR) to model the effects of phytochemistry on pollinators. 

Pollinator abundance and diversity were influenced more by statistical differences 

between patches, suggesting that in part genotypic variation played a larger role than the 

spatial separation of sites. Additionally, the concentrations and proportions of individual 

terpenes varied among patches. I found several significant relationships between certain 

pollinator taxa and terpenes. Overall, my results suggest that pollinators of S. altissima use 

terpenes when choosing host-plants. Though some of my relationships were relatively weak 

(low r2), these data lend evidence that terpenes could play a role in genotype choice in my 

study. I also found that suites of compounds extracted from flowers related to pollinator 

abundance and diversity as groups of terpenes accounted for much of the variation observed 

in pollinator abundance and community measures. Though my data support the potential role 

of terpenes in the choice of genotypes by pollinators, my experimental design does not allow 

a definitive explanation for differences among patches in pollinator abundance, richness, and 

community evenness. Even so my study is strongly suggestive that further studies, including 

experiments designed to examine pollinator species preferences for terpenes, are warranted.
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INTRODUCTION 

Community Genetics 

The field of community genetics examines the interplay between ecology and 

evolution and how this interaction influences the diversity of communities and ecosystems 

(Antonovics 1992; Fritz and Price 1988; Whitham et al. 2003, 2006, 2008; Hughes and 

Stachowitcz 2004; Johnson and Agrawal 2005; Wimp et al. 2005; Johnson and Stinchcombe 

2007). Antonovics (1992) first presented community genetics when she brought to light how 

little understood the effect that genetic variation within a species might have on the processes 

involved in species interactions, recognizing that this has evolutionary implications. Indirect 

genetic interactions take place when the genotype of a dominant foundation species 

influences the relative fitness of other species in a community (Whitham et al. 2008). Genetic 

variation lays the foundation for biodiversity, and thus evolution (Hughes et al. 2008). 

Since the emergence of community genetics as a field of study, research has shown 

that plant intraspecific variation and diversity may affect community and ecosystem 

functioning. Such variation influences ecosystem processes such as leaf litter decomposition 

(Madritch et al. 2006; Lecerf and Chauvet 2008), nutrient cycling (Madritch et al. 2006), 

microbial respiration (Seliskar et al. 2002), and plant growth and subsequent resource 

availability (Seliskar et al. 2002). These impacts have been demonstrated in multiple tree 

genera, such as Populus (Whitham et al. 2003), Eucalyptus (Dungey et al. 2000), and Pinus 

(Brown et al. 2001; Whitham et al. 2003). For herbaceous species, in an experiment using 

eelgrass (Zostera marina), Hughes and Stachowicz (2004) found that the long-term damage 
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to plant density caused by grazing animals is significantly reduced by increased genotypic 

diversity. Further investigation manipulating the biomass of Z. marina confirms that genetic 

diversity can influence a population’s response to disturbance (Hughes and Stachowicz 

2011). The results from these experiments suggest that genetic diversity provides stability for 

ecosystems.  

 

Arthropod Connection 

Some studies in community genetics have focused on the influence of plant genetic 

variation on associated faunal communities. Much of the relevant research attempts to 

understand how intraspecific genetic variation in host plants affects associated arthropod 

communities (Fritz and Price 1988; Whitham et al. 2003, 2006, 2008; Hochwender and Fritz 

2004; Wimp et al. 2004, 2005; Johnson and Agrawal 2005; Crutsinger et al. 2006; Johnson 

and Stinchcombe 2007; Genung et al. 2010; Hersch-Green et al. 2011; Burkle et al. 2013). 

Using cottonwoods, a dominant riparian tree, Wimp et al. (2004) found that the majority of 

the variation in arthropod diversity was due to genetic variation among the cottonwood 

stands. In a subsequent study, Wimp et al. (2005) found a strong correlation between 

arthropod species composition and a particular allele in the trees. Varying genotype and 

spatial scale, Johnson and Agrawal (2005) found that differences among Oenothera biennis 

(evening primrose) genotypes accounted for much of the variation in arthropod diversity, as 

well as richness, evenness, and abundance. Additionally, they found heritable variation in 

these arthropod community measures as well as choosiness in the herbivore community in 

selecting a host plant, suggesting that evolution in O. biennis can lead to changes in the 

arthropod community. Arthropod species richness and community structure are determined 
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in part by genetic diversity and variation (Crutsinger et al. 2006, 2008a, b, 2009). Crutsinger 

et al (2006, 2008a) manipulated Solidago altissima at the plot level and demonstrated that 

increasing genotypic diversity increases arthropod species richness, explained in part by the 

effects on plant productivity. Additionally, they found this effect to be non-additive, 

suggesting some genotypes contribute more than others to the observed difference the 

arthropod community. However, the impact that genotypic diversity has on associated 

communities varies between foliage-based and litter-based arthropod communities, 

demonstrating that the importance of these effects varies (Crutsinger et al. 2008b). The 

genetic variation of S. altissima also influences the diversity of associated arthropod 

communities across trophic levels and spatial scales (Crutsinger et al. 2009). While 

extremely relevant, the research Crutsinger and colleagues conducted did not address the 

pollinator community. Beyond the Solidago model using a willow (Salix sp.) and sawflies 

system, Fritz and Price (1988) demonstrated that genetic differences among willow clones 

affected sawfly density and oviposition, suggesting that the genetic variation of host plants 

strongly influences the community structure of some phytophagous insects. Studies exploring 

the relationship between a dominant riparian tree (Salicaceae: Populus) and its associated 

arthropod community showed that plant genetic diversity played a role in structuring 

arthropod diversity (Wimp et al. 2004) and that the associated arthropod community was 

influenced by genetic differences among cottonwood trees (Wimp et al. 2005). It seems clear 

that intraspecific genetic variation is important for structuring arthropod communities, 

especially those associated with foundation plant systems (Fritz and Price 1988; Whitham et 

al. 2003, 2006, 2008; Hochwender and Fritz 2004; Wimp et al. 2004, 2005; Johnson and 

Agrawal 2005; Crutsinger et al. 2006; Johnson and Stinchcombe 2007; Hersch-Green et al. 
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2011). This is relevant for my study, as a widespread and often numerically dominant plant 

species (S. altissima) was used as my plant model system. My focus on the contribution of 

spatial scale, genetic identity and phytochemistry fills a necessary gap in our understanding 

of the importance of plant intraspecific genetic variation to pollinator communities. 

As presented above, though research has focused on the influence that intraspecific 

variation and genotype identity in plant species such as S. altissima have on arthropod 

communities (Crutsinger et al. 2006; Genung et al. 2012a, b), less attention has been given to 

pollinators. Studies investigating floral visitors have found connections between the 

pollinator community and host-plant intraspecific diversity and variation. Genung et al. 

(2010) found that the genetic diversity of S. altissima indirectly influences pollinator 

abundance and richness through its effects on floral abundance. Burkle et al. (2013) found 

variation in the floral visitor community among genotypes of S. altissima, concluding that 

host plant genetic variation is a critical component in structuring the diversity and 

composition of floral visitors. Though not investigated in that study, it is possible that floral 

phytochemicals serve as signals, indicating the presence of a reward, for these floral visitors. 

While some research has focused on the terpene variation in S. altissima (Williams and 

Avakian 2015), floral terpenes and their relationship with pollinators have been largely 

unexplored. 

 

Insect Pollinators and Genetic Variation 

Plant-pollinator interactions are among the most important mutualisms, as pollination 

is a necessary ecological service that contributes to the maintenance of biodiversity and 

ecosystem functioning (Costanza et al. 1997; Balvanera et al. 2005). The majority of 
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angiosperms rely on animal-mediated pollination for reproduction (Tepedino 1979; 

Buchmann and Nabhan 1996; Kearns et al. 1998). Insects are the most abundant animal 

pollinators, and many represent the most effective pollinators (Encinas-Viso et al. 2014). The 

European honeybee Apis mellifera is well-known for its importance in effectively pollinating 

commercially significant crops in the Americas (Free 1970; McGregor 1976; Canto-Aguilar 

and Parra-Tabla 2000; Ribeiro et al. 2015). Native pollinators are equally important to 

agricultural success and ecosystem functioning. Research comparing the pollination 

efficiency of native bees to that of A. mellifera, demonstrates that some native bees are as 

effective, if not more effective at pollinating certain crops (O’Toole 1993; Richards 1996). 

While hymenopterans, particularly bees, are often the most efficient pollinators, insects of 

other orders serve important roles as pollinators and can influence ecological processes 

related to pollination. Members of the orders Lepidoptera, Diptera, and Coleoptera are well 

known pollinators (Gross and Werner 1983; Huth and Pellmyr 2000; Ramirez 2004; Li et al. 

2011; Pohl et al. 2011; Chen et al. 2014). Many taxa within Order Diptera, such as syrphid 

flies, blow flies, muscoid flies, and bee flies, are commonly found foraging among flowers 

(Kastinger and Weber 2001). Some beetles, such as Megacyllene robiniae, Chauliognathus 

pennsylvanicus, and Epicauta pennsylvanica feed on the pollen of herbaceous plants 

(Robertson 1928; Blackwell and Powell 1981; Gross and Werner 1983; Buchele et al. 1992).  

 Insect pollinators perceive various signals from angiosperms, and understanding these 

processes is critical in our understanding host-plant selection. Some of the more apparent 

mechanisms for pollinator choice of host plants include tactile cues, visual cues, and 

chemical cues emitted by plants. Because the surface of flower petals is flat by default, there 

must be some sort of evolutionary advantage to developing textured surfaces (Whitney et al. 
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2009). Bees have demonstrated the capacity for detecting differences in the microtexture of 

flower petals, the pattern of which changes from one end of a petal to the other and varies 

among species. Some pollinators to use this change in microtexture as a nectar guide as well 

as a way to discriminate between flowers of different plant species (Kevan and Lane 1985). 

The majority of pollinating insects heavily rely upon visual cues from flowers, such as floral 

traits like color, corolla tube length, and petal shape and size and movement. The vast 

spectrum of color that flowers can take on makes floral color an incredibly diverse trait, 

varying between species, within populations, and among individuals (He et al. 2011; Tang 

and Huang 2012; Sobral et al. 2015). The diversification of this trait is likely due to co-

evolution with pollinating animals (Fenster et al. 2004; Gegear and Laverty 2005) and the 

selective pressures these pollinators place on plants due to preferences in host-plants (Fenster 

et al. 2004; Frey 2004; Sobral et al. 2015). Floral color acts as a cue for potential pollinators, 

signaling the presence of a reward (i.e., pollen or nectar) or tricking the pollinator into 

thinking there is a reward (Waser and Price 1981; Waser and Price 1983; Campbell et al. 

2010; Campbell et al. 2012; Sobral et al. 2015).  

 Research demonstrates that the quality and quantity of phytochemicals are 

meaningful to potential floral visitors (Najar-Rodriguez et al. 2010). More studies are 

emerging that focus on combinations of stimuli, for example visual and tactile cues or visual 

and olfactory cues (Alcorn et al. 2012, Song et al. 2015). While visual cues attract more 

approaches from potential pollinators, olfactory cues elicit more landings (Song et al. 2015). 

A possible explanation for this is that visual cues are stronger for long-distance foraging, 

while olfactory cues are better suited to short-distance foraging (Galizia et al. 2005; Song et 

al. 2015). It seems plausible that with the wide variety of potential traits assessed by 
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pollinators when choosing a plant that trait variation between individuals (or even more 

broadly genotypes) is important to consider. 

 Angiosperms display tremendous interspecific and intraspecific genetic variation in 

floral traits (Ollerton et al. 2011). This variation is largely attributed to pollinator preference, 

as the majority of flowering plants rely on animal-mediated pollination for sexual 

reproduction (Ollerton et al. 2011). Insect pollinators perceive various signals that flowering 

plants emit, and understanding the way pollinators perceive these signals is critical in our 

understanding of the importance of biodiversity and plant intraspecific variation. Many host-

plant traits important for pollinator choice, such as floral structure, scent, and pollen quantity 

and quality, may vary among individuals since they are genetically-based (Raguso et al. 

2007; Johnson et al. 2009; Chen et al. 2014; Yeamans et al. 2014). Because host plant genetic 

variation influences associated pollinator communities, evolutionary processes in plants 

should have consequences for both pollinators and the ecosystem services they support (i.e., 

pollination, climate regulation, and nutrient cycling) (Genung et al. 2010). Plant intraspecific 

variation in floral odor may come about through a variety of methods, yet determining the 

basis of this variation in natural populations of particular species remains a challenge 

(Ackerman et al. 1997; Azuma et al. 2001; Knudsen 2002; Schlumpberger and Raguso 

2008). Since as mentioned olfaction is an important mechanism by which insects choose host 

plants (Hossaert-Mckey et al. 1994; Couty et al. 2006; Du and Wu 2007; Mazzoni 2009; 

Karpati et al. 2013), phytochemical variation among host plant genotypes likely plays an 

important role in structuring associated insect communities (Lindroth and Hwang 1996; 

Hwang and Lindroth 1998; Wimp et al. 2007). 
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Phytochemistry 

Plants synthesize and emit a wide range of volatile chemicals that play important 

roles in ecosystem processes such as pollination. Many of these phytochemicals are 

secondary metabolites, including terpenes, alkaloids, and phenols, as well as fatty-acid 

derivatives, benzenoids, and other aromatics (Knudsen et al. 1993). Plants exhibit remarkable 

interspecific and intraspecific variation in their phytochemistry, even though similar 

compounds undergo synthesis through the same biological pathways despite plant species 

(Schwab et al. 2008). This genetic variation may affect plant visitors in different ways 

(Berenbaum and Zangerl 1992; Lankau 2007; Macel and Klinkhamer 2010). Plant volatiles 

vary among populations and genotypes (Gouinguene et al. 2001; Hare 2007; Wimp et al. 

2007; Delphia et al. 2009; Whitehead and Peakall 2009). This intraspecific genetic variation 

results in particular genotypes producing varying amounts of different compounds 

(Holopainen et al. 1987; Grayer et al. 1996; Egerton-Warburton et al. 1998; Kleine and 

Muller 2011). Species of the genera Oenothera and Solidago also display great intraspecific 

variation in their secondary chemistry, and numerous studies have demonstrated the effects 

this has on associated insect communities (Raguso et al. 2007; Johnson et al. 2009; Smith 

2015). Because insects rely heavily on their perception of scents (Chittka and Raine 2006; 

Milet-Pinheiro et al. 2015), it is likely that these genotype-unique compositions of terpenes 

(and possibly other volatile compounds) influence floral visitor choice in host plant. Because 

plants produce different compounds and in different amounts, insects have likely evolved to 

detect certain scents or scent bouquets while searching for host plants. Floral phytochemistry 

displays significant intraspecific variation in Buddleja davidii (butterfly bush) and certain 

compounds attract pollinating butterflies to host plants (Chen et al. 2014).  
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Terpenes make up the largest and most diverse class of plant secondary metabolites 

(Langenheim 1994; Trapp and Croteau 2001) and serve as both attractants and deterrents for 

different types of insects (Langenheim 1994; Goncalves et al. 2015; Zeilinger et al. 2015). 

Williams and Avakian (2015) found that terpene variation among genotypes of S. altissima 

explained substantial variation in the abundance of a specialist aphid, Uroleucon 

nigrotuberculatum. Previous research conducted in the Williams laboratory at Appalachian 

State University support the notion that terpenes vary among genotypes of S. altissima, and 

that this variation affects associated insects (Howells 2012; Smith 2015). While terpenes can 

influence insect use of host-plants, much of this research has focused on antagonistic 

relationships (i.e., phytophagy and herbivory; Raffa et al. 1985; Werner 1995; Barnola et al. 

1997; Huber and Bohlmann 2004; Kleine and Mulleur 2011) rather than mutualistic 

relationships such as pollination. Insect floral visitors might be attracted to strong, complex 

terpene emissions, as the intensity and complexity of volatile floral emissions have been 

shown to influence biotic pollination (Farre-Armengol et al. 2015). Of course, floral 

compounds that exist in low concentrations or proportions should not be discounted, as they 

may also be important to pollinators (McCormick et al. 2014). Two sulfur-containing volatile 

compounds in some Euconis species have been shown to influence the attractiveness of host 

plants to pollinating fly species, despite their low abundance (Stensmyr et al. 2002; 

Shuttleworth and Johnson 2010; Jurgens et al. 2013). Yet, it is probable that mixtures of 

scents, rather than individual compounds, are necessary in attracting pollinators (McCormick 

et al. 2014).   
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Spatial Scale 

Spatial scale is important to consider in community genetics research because the 

effects of plant genotypic variation may be scale-dependent (Stratton and Benington 1998; 

Johnson and Agrawal 2005; Crutsinger et al. 2009; Genung et al. 2011; Genung et al. 2012b; 

Burkle et al. 2013). For example, observed differences between genotype traits could be due 

to differences at the gene level or because of environmental influences, or both. Thus spatial 

scale is an important component to include in studies that look at possible effects of plant 

genetic variation on associated insect communities – particularly for plant species with wide 

distributions. The importance of genetic variation is relative to the size of a given 

experiment, and the interpretation of results from community genetics studies may depend on 

the spatial scale observed (Hersch-Green et al. 2008; Tack et al. 2010). The Scale-Dependent 

Hypothesis (Menge and Olson 1990; Jackson et al. 2001) assumes that biotic factors are 

more important in structuring communities over small spatial scales (representative of 

genetic effects), while abiotic factors are more important for larger spatial scales 

(representative of environmental effects). Johnson and Agrawal (2005) examined spatial 

scale in a study that explored how an arthropod community was shaped by host-plant 

genotype. Their results support the idea that at a small spatial scale such as habitat, plant 

genotype is more important than environmental variation in structuring the arthropod 

community, but at larger scales it becomes less important. Spatial connectivity may also be 

an important factor pertaining to spatial scale and was found to be a greater determinant of 

insect communities than were genetic factors (Tack et al. 2010).  
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Solidago altissima as a Model System 

Foundation species such as goldenrod support a large diversity of associated 

organisms (Ellison et al. 2005). The genus Solidago (goldenrod) is a well-understood plant 

system that has been used to address questions rooted in community genetics (see Crutsinger 

et al. 2006, Genung et al. 2012a). Certain characteristics of this genus, such as its wide 

distribution and reproductive attributes, make it particularly useful in answering questions 

concerning inter- and intraspecific genetic variation (Hakes and Cronin 2006). The aster S. 

altissima (tall goldenrod) is a perennial herb that may dominate old field habitats (Root 

1996). The species is native to much of North America (Halverson et al. 2008; Fenesi et al. 

2015; Zhao et al. 2015) and has a conspicuous architecture with yellow flowers. One of the 

earliest studies that examined goldenrod genetic variation found that genotypes of S. 

altissima varied in resistance to herbivorous insects, demonstrating heritable resistance 

(Maddox and Root 1987). Solidago altissima hosts over 100 insect species from a variety of 

feeding guilds (Maddox and Root 1987; Root and Cappuccino 1992; Root 1996). This 

goldenrod species may reach a height of 50-200 cm and has one or more free-standing stems 

that possess trichomes (FNA). Leaves are simple lanceolate, sometimes have serrate margins, 

and grow in an alternating pattern along the stem. Leaves have three notable main veins that 

can be observed on the underside (Mackenzie 1927). Inflorescences are terminal pyramidal 

panicles consisting of many branches and flower heads. A capitulum can contain 10 to 15 

pistillate ray flowers surrounding 3 to 7 hermaphroditic disc flowers (Abrahamson and Weis 

1997). Each flower (ray and disc) produces a single seed (Wise et al. 2008). Because the 

pollen of S. altissima is too heavy and sticky to be dispersed by wind, the genus largely relies 

on insect-mediated pollination for sexual reproduction (Gross and Werner 1983). Species 
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such as S. altissima are self-incompatible and exhibit obligatory outcrossing. The relationship 

with pollinators allows for the seed production that is necessary for colonizing new patches 

and increasing or maintaining intraspecific genetic diversity (Meyer and Schmid 1999; 

Burkle et al. 2013). Solidago altissima is particularly important to late season floral visitors 

since the species blooms in September to October. That is, these plants are typically some of 

the last sources of pollen and nectar for floral visitors before overwintering (Mader et al. 

2011). Because this species is known to exhibit considerable intraspecific genetic variation 

and rely on pollinators exclusively it provides an excellent model system to address my 

research questions. 

 

Objectives 

My thesis research examines the relationships between phytochemistry, spatial scale 

and the pollinator community in S. altissima. I was interested in the trait variation within and 

between fields so that the role of genetic variation within patches (genetic identity effect) 

could be compared to effects of spatial scale (environment effect). My study had four 

primary objectives, to determine in S. altissima if:  

● Genotype and site influenced the associated insect pollinator community. 

● Genotypic (small-scale) and site (large-scale) influenced flower phytochemistry. 

● Phytochemical variation and pollinator abundance and diversity within sites (genetic 

identity effect) was greater or lesser than that between sites (environment effect). 

● The pollinator community was related to volatile terpenes in flowers. 

I expected that genotype would have a greater effect on the abundance and diversity of the 

associated pollinator community, and that phytochemistry would vary among genotypes. 
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Additionally, I expected to find a meaningful relationship between the pollinator community 

and terpene variation.  

 My conclusions regarding effects of genotype were made with caution due to my 

experimental design, though analyzing differences between my study sites allowed for a clear 

interpretation of site effects and estimates as to where the major contributions to 

phytochemistry and the pollinator community arose.
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MATERIALS AND METHODS 

Experimental Design 

Solidago altissima reproduces vegetatively by rhizomes, resulting in discrete patches 

composed of a single genotype (Gross and Werner 1983; Halverson et al. 2008; Burkle et al. 

2013). Clonal reproduction provides a useful system to investigate intraspecific genetic 

diversity in this foundation plant species that often achieves high abundance in old-field 

ecosystems. Solidago altissima has a minimum threshold size required for sexual 

reproduction to occur, and there is an increasing probability of flowering with increasing size 

(Schmid et al. 1995). Plants will put resources into clonal growth, but if they possess 

sufficient resources to reproduce sexually, they will do so at a cost in vegetative reproduction 

(Ashmun and Pitelka 1985; Pitelka et al. 1985; Schmid et al. 1995). Previous investigations 

have demonstrated that S. altissima patches of 35 meters or more apart represent distinct 

genotypes (Crutsinger et al. 2006). 

I used four sites in Watauga County, North Carolina, each containing four patches of 

S. altissima. Patches were assigned SF (State Farm, Site 1), TJ (Tom Jackson, Site 2), PKY 

(Parkway, Site 3), and 421 (U.S. 421, Site 4). GPS coordinates and elevation of patches 

within sites are found in Appendix 1. The site SF was located along the Kennedy Trail at the 

ASU State Farm greenway; TJ is an abandoned field located at the intersection of Castle 

Ford Road and Tom Jackson Road; PKY is located along the Blue Ridge Parkway off of Day 

Drive (Boone, NC), and 421 is an abandoned field located along the US 421 Highway in 

Vilas, NC. I chose sites that were similar in light availability, slope, elevation, and 
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surrounding environment (each site had a road along one side). In 2014 at each site I chose 

discrete patches of S. altissima that were a minimum of 35m apart, allowing for strong 

confidence in choosing different genets. Within each patch I chose a 1m2 area to sample 

plants and observe pollinators. Five individual stems within the 1m2 patch were chosen at 

random and subsequently marked using orange ribbon. These five individuals were my 

genotype replicates and were observed to characterize the pollinator community, as well as to 

collect flower samples for volatile terpene analysis.  

 

Pollinator Surveys 

I characterized the associated pollinator community by conducting three sets of 

surveys during the blooming period of September through October 2014 (4 sites X 4 patches 

X 3 visits = 48 total visits). Surveys were carried out on relatively warm days (12.8°C to 

21.1°C) between 11:00-16:00 with either full or partial sun. I attempted to account for 

differences in flower phenology among the sites and patches by only surveying pollinators 

when approximately 75% or more of the flowers in a given patch were in bloom. Surveys 

were five minutes each. During this time any individual that landed on an inflorescence of a 

marked stem was counted. Insects were initially identified in the field and for some furtherer 

identified in laboratory using the supplemental information from Burkle et al. (2013) as a 

guide to the pollinators associated with S. altissima. This guide, in addition to field guides 

and dichotomous keys, allowed me to identify many of the pollinators to the species level. 

Insects I was unable to speciate were assigned to a morphospecies.  
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Terpene Samples and Analysis 

At the conclusion of the pollinator surveys, inflorescences were collected from all 

plants observed in each patch to analyze flowers for terpenes. There were five samples 

collected per patch, for a total of 80 inflorescence samples in my experiment. Inflorescences 

were placed into plastic bags, stored in a cooler for transportation to the laboratory, and 

placed in a refrigerator for no more than 4 days. Processing the inflorescences entailed 

separating approximately 2 g of florets with the calyx from the peduncle. Samples were 

placed in 20 ml HPLC-grade pentane in glass culture tubes and stored at 4°C for a minimum 

of 6 weeks to extract terpenes from the flowers. Analysis of flower terpenes followed a 

modified procedure of protocols previously established in the Williams laboratory (see 

Williams and Avakian 2015). Each sample was ground for 60 seconds using a Polytron 

homogenizer and immediately filtered into 125x50 mm glass tube. Nitrogen gas was used to 

gently bubble the samples, concentrating them to 0.5 ml. A 1 µl sample was injected into a 

Shimadzu 14-A gas chromatograph with a flame ionization detector. The injector 

temperature was set to 250°C with the detector temperature set to 275°C. The starting 

temperature was held at 80°C for 2 minutes. The column temperature increased 10°C/minute 

until it reached 280°C, and was then held at this temperature for 2 minutes. The total run time 

was 24 minutes. The retention times of analytical standards were used to identify terpenes. 

Unknown compounds were labeled (Unknown 0 to Unknown n). Some compounds (example 

germacrene D) could be identified with high confidence based on previous studies in the 

Williams laboratory. Such compounds could be referred to as "tentatively identified" since no 

analytical standard was available. The internal standard (IS) tri-decane (Sigma-Aldrich) was 
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used to calculate compound concentration. Note that these samples including the calyx were 

used for any linear regressions with pollinator and other data.  

In addition to the analysis of flower terpenes, in order to analyze the contribution of 

the calyx, which could contain terpenes, three samples were collected in September 2015 

from each of two sites (SF and TJ). These samples were prepared the same way as previously 

described. Tweezers were used to carefully pull the calyx from the floret in each sample. 

Calyces from a given sample were placed into a separate tube from the rest of the florets for 

the same sample. The procedure for analyzing terpenes followed that described above. The 

concentration of each known terpene in each sample was calculated, and the mean of each 

terpene was used to find the percentage difference in concentrations between the flower and 

calyx. For 12 of the 14 terpenes present, the flower contained a higher percentage (6-92%) of 

the terpenes than did the calyx. The compounds (-)trans-caryophyllene and azulene were 

found in higher concentrations in the calyx than the flower (see Appendix 3).  

 

Soil Nutrient Analysis 

Soil cores were collected after the conclusion of pollinator surveys to examine 

potential variation in soil carbon, nitrogen, and their ratio among patches and sites, as this 

could affect flower terpene production. Four 15 cm samples were collected from each patch 

(4 sites X 4 patches X 4 samples = 64 total samples) using a 2.5cm X 15cm soil corer. Upon 

collection, individual samples were placed into a plastic bag and stored in a cooler for 

transportation to the laboratory. Soil samples were individually sieved using a 2 mm mesh 

sieve to remove rocks and plant matter. Samples were then placed into scintillation vials and 

freeze-dried. After drying, three bb pellets were placed into each scintillation vial, and 
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samples were ground for 5 minutes using a Pacer Industrial mixer. Once freezedried and 

ground to a very fine powder, each sample was measured between 25-30 mg and placed into 

a Costech Analytical Technologies, Inc. 5x9 mm tin capsules. Atropine was used as an 

analytical standard. The carbon and nitrogen concentration and their calculated ratio for soil 

samples were analyzed alongside the atropine standards and soil controls using a Flash 

EA112 (ThermoFisher) elemental analyzer. 

 

Statistical Analysis 

I calculated the coefficient of determination (r2) in a general linear model (One-way 

ANOVA, JMP 12.1.0) to partition the effects of site (model SS) from genotype (part of error 

SS) for my dependent variables. In my analysis the site contribution is the coefficient of 

determination (r2). The calculation 1-r2, which takes into account the error terms in my 

ANOVA model, in theory represents the genotype contribution. I recognize that other factors 

could have contributed to the experimental error in my model and that without replication of 

genotypes (not possible in my field observational experiment), definitive conclusions on a 

genotype contribution are tenuous. Nevertheless, the robustness of my model allows for clear 

conclusions as to the effect of site variation and conclusions about a genotype contribution, 

as least in part. Values of P ≤ 0.05 are reported as significant, while values of 0.05 P ≤ 0.10 

are reported as marginally significant. For pollinators, four measures were analyzed: 

abundance, richness, adjusted richness, and evenness. Abundance was calculated as both 

total abundance for the three visits and mean abundance, using the mean of three visits. For 

the terpene analysis, while there were over 100 compounds found in some flower samples, 

many of these were unknown and could not be confirmed as terpenes. For this study only 
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compounds either positively identified using analytical standards, or compounds known with 

a high degree of confidence (see previous), are reported. Data were log transformed (loge) to 

increase normality. A linear regression was used (JMP 12.1.0) to regress individual terpenes 

with insect and soil nutrient data measures. Cook’s D Influence was used (JMP 12.1.0) to 

determine whether any outliers were significant enough to be excluded, and any such outliers 

were removed prior to the regressions (Cook 1979). Terpenes were analyzed in two ways: 

concentration (mg compound/g flower) and the allocation of individual terpenes in a sample. 

Data were arcsine transformed to increase normality.  

 The relationships between flower terpenes and pollinator measures were analyzed 

using Partial Least Squares Regression (PLSR; JMP Pro 10). This is an appropriate 

multivariate technique for modeling the effects of phytochemistry if collinearity exist 

between variables (see Wold 1984). Partial Least Squares Regression has been used for 

ecological investigations to examine the relationship between phytochemicals and insect 

performance (Couture et al. 2012) and in the Williams laboratory to relate terpenes to aphid 

abundance (Williams and Avakian 2015). For this analysis a two-factor model was used (see 

Cox and Gaudard 2013). In order to fit the most appropriate model to the data, the Score 

Scatterplot Matrix was examined and any points outside of the confidence circle were 

omitted as outliers. A Variable Importance Projection (VIP) determined the predictor 

variables (i.e., terpenes) in the model that showed the strongest response between both 

predictor and response matrices. Regressing observed versus predicted values provides the 

relationship between flower terpenes and pollinator measures.
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RESULTS 

Pollinator Community 

Using 1- r2 from my ANOVA model as previously described, I found that variation 

most likely due to S. altissima genotypes for total pollinator abundance contributed much 

more to my model than did site (r2), where all but two taxa had a non-significant site effect 

(Table 1; Figs 1-4). Differences between sites explained generally less than 30% of the 

variation, with exceptions being for order Coleoptera and the eastern carpenter bee Xylocopa 

virginica (Table 1). Similar results were found when mean pollinator abundance was 

calculated, with exceptions again for order Coleoptera and X. virginica (Table 2; Figs 5-8).
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Table 1. The P value, F ratio, and df (One-way ANOVA, JMP 12) of total pollinator 

abundance by taxa. 

      p      F      r2 1-r2 

All Pollinators 0.672 0.527 0.116 0.884 

Hymenoptera 0.573 0.694 0.148 0.852 

Diptera 0.365 1.161 0.225 0.775 

Coleoptera 0.073 2.996 0.428 0.572 

Lepidoptera 0.677 0.520 0.115 0.885 

Apis mellifera 0.218 1.710 0.299 0.701 

Bombus impatiens 0.569 0.701 0.149 0.851 

Dominant Pollinators 0.447 0.952 0.192 0.808 

Xylocopa virginica 0.040 3.803 0.487 0.513 

Bee 1 0.626 0.602 0.131 0.869 

Ichneumonidae 0.726 0.444 0.100 0.900 

Braconidae 0.493 0.851 0.175 0.825 

All Parasitoid Wasps 0.759 0.395 0.090 0.910 

All Wasps 0.201 1.799 0.310 0.690 

Syrphidae 0.185 1.890 0.321 0.679 

Tachinidae 0.115 2.436 0.378 0.622 

Sarcophagidae 0.734 0.432 0.097 0.903 

Fly 1 0.394 1.081 0.213 0.787 

Megacyllene robiniae 0.363 1.168 0.226 0.774 

Chauliognathus 

pennsylvanicus 

0.426 1.000 0.200 0.800 

Cisseps fulvicollis 0.426 1.000 0.200 0.800 

Atteva aurea 0.397 1.073 0.212 0.788 

Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in bold text. 

dominant pollinators is comprised of A. mellifera and B. impatiens, as they were the most 

abundant pollinators. 

df = 3, 12. 
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Fig 1. Total insect abundance by site for: all pollinators (A), Order Hymenoptera (B), Order 

Diptera (C), and Order Coleoptera (D). 
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Fig 2. Total insect abundance by site for: Apis mellifera (A), Bombus impatiens (B), 

Xylocopa virginica (C), and dominant pollinators (D). 
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Fig 3. Total insect abundance by genotype for: all pollinators (A), Order Hymenoptera (B), 

Order Diptera (C), and Order Coleoptera (D). 
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Fig 4. Total insect abundance by genotype for: Apis mellifera (A), Bombus impatiens (B), 

Xylocopa virginica (C), and dominant pollinators (D). 
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Table 2. The P value, F ratio, and df (One-way ANOVA, JMP 12) of mean pollinator 

abundance by taxa. 

 p F r2 1-r2 

All Pollinators 0.669 0.532 0.117 0.883 

Hymenoptera 0.561 0.717 0.152 0.848 

Diptera 0.293 1.393 0.258 0.742 

Coleoptera 0.070 3.052 0.433 0.567 

Lepidoptera 0.627 0.600 0.130 0.870 

Apis mellifera 0.188 1.876 0.319 0.681 

Bombus impatiens 0.574 0.693 0.148 0.852 

Dominant Pollinators 0.455 0.933 0.189 0.811 

Xylocopa virginica 0.053 3.422 0.461 0.539 

Bee 1 0.649 0.565 0.124 0.876 

Ichneumonidae 0.668 0.534 0.118 0.882 

Braconidae 0.484 0.868 0.178 0.822 

All parasitoid wasps 0.776 0.370 0.085 0.915 

All wasps 0.275 1.460 0.267 0.733 

Syrphidae 0.217 1.714 0.300 0.700 

Tachinidae 0.126 2.326 0.368 0.632 

Sarcophagidae 0.640 0.578 0.126 0.874 

Fly 1 0.383 1.112 0.218 0.782 

Megacyllene robiniae 0.361 1.171 0.226 0.774 

Chauliognathus 

pennsylvanicus 

0.426 1.000 0.200 0.800 

Cisseps fulvicollis 0.426 1.000 0.200 0.800 

Atteva aurea 0.385 1.107 0.217 0.783 

Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in bold text. 

df = 3, 12. 
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Fig 5. Mean insect abundance by site for: all pollinators (A), Order Hymenoptera (B), Order 

Diptera (C), and Order Coleoptera (D). 
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Fig 6. Mean insect abundance by site for: Apis mellifera (A), Bombus impatiens (B), 

Xylocopa virginica (C), and dominant pollinators (D). 
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Fig 7. Mean insect abundance by genotype for: all pollinators (A), Order Hymenoptera (B), 

Order Diptera (C), and Order Coleoptera (D). 
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Fig 8. Mean insect abundance by genotype for: Apis mellifera (A), Bombus impatiens (B), 

Xylocopa virginica (C), and dominant pollinators (D).
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Using the same interpretation of my analysis as for pollinator abundance, variation 

most likely due to S. altissima genotypes (1-r2) for mean pollinator richness and evenness 

contributed much more to my model than did spatial separation of sites (p value, r2) (Table 3; 

Figs 9-10). The mean adjusted richness for pollinators was found to be marginally related to 

S. altissima intraspecific variation (Table 3). For mean richness, mean adjusted richness, and 

mean evenness differences between sites explained 17%, 41%, and 28% of the variation, 

respectively (Table 3). 

Table 3. The P value, F ratio, and df (One-way ANOVA, JMP 12) for pollinator 

diversity measures. 

 p F r2 1-r2 

Mean Richness 0.508 0.818 0.170 0.830 

Mean Adjusted Richness 0.088 2.757 0.408 0.592 

Mean Evenness 0.255 1.541 0.278 0.722 

Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in bold text. 

df = 3, 12. 
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Fig. 9. Mean pollinator richness (A), adjusted richness (B), and evenness 

(C) by site. 
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Fig. 10. Mean pollinator richness (A), adjusted richness (B), and evenness 

(C) by genotype. 
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Terpene Concentrations and Proportions 

Floral terpenes in S. altissima were primarily affected by differences among patches 

and not by spatial separation of fields (Table 4; Figs 11-14). Of the twelve terpenes I report, 

only one (α-phellandrene) differed between sites, and only marginally. The error contribution 

ranged from 57.7-96.3 % (Table 4). The proportions of three terpenes, α-phellandrene, p-

cymene and germacrene-D were affected by site (Table 5) though as with terpene 

concentration, the genotype contribution was by and large the biggest contribution to the 

ANOVA model for most compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in bold text. 

df = 3, 12. 
 

 

 

 

 

 

Table 4. The P value, F ratio, and df (One-way ANOVA, JMP 12) 

for concentrations of individual terpenes. 

Terpene (mg/g)     p      F     r2    1-r2 

α-pinene 0.574 0.693 0.148 0.852 

camphene 0.551 0.073 0.155 0.845 

β-pinene 0.191 1.856 0.317 0.683 

α-phellandrene 0.077 2.929 0.423 0.577 

p-cymene 0.220 1.701 0.298 0.702 

β-elemene 0.869 0.237 0.056 0.944 

caryophyllene 0.431 0.989 0.198 0.802 

germacrene-D 0.318 1.306 0.246 0.754 

azulene 0.564 0.710 0.151 0.849 

γ-elemene 0.925 0.154 0.037 0.963 

ledene oxide 0.647 0.567 0.124 0.876 

bicyclo (4.4.0) 

dec-5 
0.335 1.251 0.238 0.762 
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Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in bold text. 

df = 3, 12. 
 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The P value, F ratio, and df (One-way ANOVA, JMP 12) 

for proportions of individual terpenes. 

Terpene     p      F     r2   1-r2 

α-pinene 0.124 2.345 0.370 0.630 

camphene 0.151 2.121 0.347 0.654 

β-pinene 0.658 0.549 0.121 0.879 

α-phellandrene 0.036 3.937 0.496 0.504 

p-cymene 0.007 6.625 0.624 0.377 

β-elemene 0.832 0.290 0.068 0.932 

caryophyllene 0.189 1.866 0.318 0.682 

germacrene-D 0.050 3.501 0.467 0.533 

azulene 0.468 0.904 0.184 0.816 

γ-elemene 0.948 0.117 0.029 0.972 

ledene oxide 0.453 0.936 0.190 0.810 

bicyclo (4.4.0) 

dec-5 
0.482 0.873 0.179 0.821 
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Fig. 11. Concentrations of individual terpenes by site: α-pinene (A), Camphene (B), β-pinene 

(C), α-phellandrene (D), P-cymene (E), and β-elemene (F). 
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Fig. 12. Concentrations of individual terpenes by site: Caryophyllene (A), Germacrene-D 

(B), Azulene (C), γ-elemene (D), Ledene Oxide (E), and Bicyclo(4.4.0)dec-5 (F). 
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Fig. 13. Concentrations of individual terpenes by genotype: α-pinene (A), Camphene (B), β-

pinene (C), α-phellandrene (D), P-cymene (E), and β-elemene (F). 
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Fig. 14. Concentrations of individual terpenes by genotype: Caryophyllene (A), Germacrene-

D (B), Azulene (C), γ-elemene (D), Ledene Oxide (E), and Bicyclo(4.4.0)dec-5 (F).
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Soil Nutrients 

There were differences in soil nitrogen, carbon, and C:N among sites (Table 6, Fig 

15). The C:N ratio was largely driven by differences in carbon content between sites. Overall 

the contribution of patches was less than 20% of the observed variation in my model. 

Table 6. The P value, F ratio and df (One-way ANOVA, JMP 

12) for soil nutrient means. 

      p      F     r2    1-r2 

Nitrogen 0.0003 14.648 0.786 0.215 

Carbon 0.0001 18.795 0.825 0.175 

C:N 0.0001 23.794 0.856 0.144 

Note: p ≤ 0.05 presented with bold text. 

df = 3, 12. 

 

 
Fig. 15. Mean nitrogen content (mg nitrogen/g soil), carbon content (mg carbon/g soil), and 

C:N ratio among sites. 

 

 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

1 2 3 4

N
u
tr

ie
n

t 
C

o
n

te
n

t

Site

mean N (mg/g)

mean C (mg/g)

mean C:N
bb

b

b

c

c

cd

d

a

a

a



41 
 

 
 

Linear Regression 

 The total abundance of all pollinators was significantly related to -pinene and 

bicyclo(4.4.0)dec-5 concentrations, with a marginally significant relationship with camphene 

observed (Table 7, Figure 16A, 16B, 16F). Noteworthy is the decline in pollinator abundance 

as -pinene and bicyclo(4.4.0)dec-5 and camphene concentration increased. I found no 

relationship between all pollinators and the concentrations of other terpenes (Table 7). 

Concentrations of -pinene and bicyclo(4.4.0)dec-5 were also related to the total abundance 

of Order Hymenoptera (Table 7, Figure 17A, 17D), again with a decline in insects as 

terpenes increased. Total abundance for Order Diptera has a significant relationship with the 

concentration of one terpene, azulene (Table 7, Figure 17C). No significant relationships 

were found between total abundances for Orders Coleoptera or Lepidoptera and any 

individual terpene concentrations (Table 7). The total abundance of A. mellifera was 

marginally related to -phellandrene and significantly related to bicyclo(4.4.0)dec-5 

concentrations (Table 7, Figure 18C, 18F). The total abundance of B. impatiens was 

marginally related to both -phellandrene and caryophyllene concentrations, with significant 

relationships found with both -pinene and camphene concentrations (Table 7, Figure 18A-

D). Dominant pollinators, consisting of A. mellifera and B. impatiens, were related to -

pinene and bicyclo(4.4.0)dec-5 concentrations (Table 7, Figure 18A, 18F). The total 

abundance of Family Syrphidae was related to -elemene concentration (Table 7, data not 

shown).
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Fig. 16. Linear regressions between total abundance for all pollinators and individual terpene 

concentrations.  
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Fig. 17. Linear regressions between total abundance for Orders Hymenoptera (solid line), 

Diptera (dashed line), Lepidoptera, and Coleoptera and individual terpene concentrations. 
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Fig. 18. Linear regressions between total abundance for A. mellifera (solid line), B. impatiens 

(dashed line), and dominant pollinators (dotted line) and individual terpene concentrations. 
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 The total abundance of all pollinators was marginally related to the proportion of 

camphene and bicyclo(4.4.0)dec-5, with a significant relationship with p-cymene proportion 

(Table 8, Figure 19B, 19D, 19F). As pollinator abundance declined, floral allocation of these 

compounds increased. The total abundance of Order Hymenoptera was marginally related to 

-elemene and bicyclo(4.4.0)dec-5 proportions, with a significant relationship with p-cymene 

proportions (Table 8, Figure 20D-F). The total abundance of Order Diptera was not related to 

individual terpene proportions (Table 8). The total abundance of Order Coleoptera 

demonstrated marginally significant relationships with camphene, p-cymene, and 

bicyclo(4.4.0)dec-5 proportions (Table 8, Figure 20B, 20D, 20F). The total abundance of 

Order Lepidoptera was marginally related to -pinene proportions and significantly related to 

both camphene and -pinene proportions (Table 8, Figure 20A-C). The total abundance of A. 

mellifera was marginally related to bicyclo(4.4.0)dec-5 and significantly related to p-cymene 

(Table 8, Figure 21C, 21F). The total abundance of B. impatiens was marginally related to 

both -pinene and azulene proportions (Table 8, Figure 21B, 21D). The total abundance of 

dominant pollinators was significantly related to both p-cymene and -elemene proportions 

(Table 8, Figure 21C, 21E). The total abundance of family Syrphidae had no significant 

relationships with individual terpene proportions (Table 8).



47 
 

 
 

 

T
er

p
en

e
p

r
2

p
r

2
p

r
2

p
r

2
p

r
2

p
r

2
p

r
2

p
r

2

α
-p

in
en

e
0
.1

3
4

0
.1

5
3

0
.1

8
2

0
.1

2
4

0
.1

1
8

0
.1

7
7

0
.3

1
6

0
.0

7
2

0
.0

7
4

0
.2

1
0

0
.3

8
7

0
.0

5
4

0
.2

5
1

0
.0

9
3

0
.2

6
1

0
.0

8
9

ca
m

p
he

ne
0
.0

7
2

0
.2

1
3

0
.1

3
7

0
.1

5
1

0
.9

1
8

0
.0

0
1

0
.0

6
6

0
.2

2
1

0
.0

4
2

0
.2

6
4

0
.4

0
8

0
.0

4
9

0
.2

3
5

0
.0

9
9

0
.1

9
6

0
.1

1
6

β
-p

in
en

e
0
.2

0
2

0
.1

1
4

0
.1

7
7

0
.1

2
6

0
.8

4
7

0
.0

0
3

0
.1

9
7

0
.1

1
6

0
.0

3
9

0
.2

7
1

0
.2

4
3

0
.0

9
6

0
.0

8
5

0
.1

9
7

0
.1

5
6

0
.1

3
9

α
-p

he
lla

nd
re

ne
0
.4

2
3

0
.0

4
6

0
.4

5
0

0
.0

4
1

0
.4

8
6

0
.0

3
5

0
.6

8
3

0
.0

1
2

0
.8

7
2

0
.0

0
2

0
.2

1
4

0
.1

0
8

0
.2

2
7

0
.1

0
3

0
.1

8
8

0
.1

2
0

p
-c

ym
en

e
0
.0

4
1

0
.2

6
7

0
.0

4
2

0
.2

6
3

0
.9

1
3

0
.0

0
1

0
.0

9
7

0
.1

8
5

0
.3

9
7

0
.0

5
2

0
.0

4
6

0
.2

5
5

0
.1

9
2

0
.1

1
9

0
.0

3
2

0
.2

8
9

β
-e

le
m

en
e

0
.6

9
2

0
.0

1
2

0
.7

7
6

0
.0

0
6

0
.3

7
9

0
.0

7
3

0
.1

3
3

0
.1

5
4

0
.8

4
0

0
.0

0
3

0
.8

4
9

0
.0

0
3

0
.9

0
9

0
.0

0
1

0
.9

6
5

0
.0

0
0

ca
ry

o
p
hy

lle
ne

0
.3

3
6

0
.0

7
1

0
.3

0
3

0
.0

8
1

0
.8

2
8

0
.0

0
4

0
.4

1
1

0
.0

4
9

0
.5

5
6

0
.0

2
5

0
.2

0
2

0
.1

2
2

0
.3

9
7

0
.0

5
2

0
.1

4
3

0
.1

5
8

ge
rm

ac
re

ne
-D

0
.4

4
9

0
.0

4
2

0
.3

0
3

0
.0

7
5

0
.3

7
9

0
.0

5
6

0
.1

4
4

0
.1

4
6

0
.7

6
6

0
.0

0
7

0
.1

3
7

0
.1

5
1

0
.4

9
8

0
.0

3
6

0
.1

7
3

0
.1

2
8

az
ul

en
e

0
.4

8
6

0
.0

3
5

0
.4

3
7

0
.0

4
4

0
.4

4
1

0
.0

4
6

0
.2

4
4

0
.0

9
6

0
.4

8
2

0
.0

3
9

0
.3

3
7

0
.0

6
6

0
.0

9
3

0
.2

0
2

0
.9

3
4

0
.0

0
1

γ-
el

em
en

e
0
.3

2
6

0
.0

6
9

0
.0

7
8

0
.2

2
0

0
.9

4
8

0
.0

0
0

0
.6

9
0

0
.0

1
2

0
.1

3
3

0
.1

5
4

0
.0

7
0

0
.2

3
0

0
.1

7
5

0
.1

2
7

0
.0

4
7

0
.2

7
1

le
d
en

e 
o
xi

d
e

0
.2

6
6

0
.0

8
7

0
.2

1
7

0
.1

0
7

0
.5

3
6

0
.0

3
0

0
.3

0
7

0
.0

7
4

0
.8

0
3

0
.0

0
5

0
.9

7
7

0
.0

0
0

0
.4

0
5

0
.0

5
0

0
.7

8
5

0
.0

0
6

b
ic

yc
lo

(4
.4

.0
)d

ec
-50

.0
6
2

0
.2

2
7

0
.0

6
8

0
.2

1
8

0
.5

1
9

0
.0

3
0

0
.0

7
5

0
.2

0
9

0
.9

2
4

0
.0

0
0

0
.1

9
6

0
.1

1
7

0
.3

8
0

0
.0

5
5

0
.1

2
1

0
.1

6
3

N
o
te

: 
p

 ≤
 0

.0
5
 (

si
gn

ifi
ca

nt
) 

an
d
 p

 ≤
 0

.1
0
 (

m
ar

gi
na

lly
 s

ig
ni

fic
an

t)
 p

re
se

nt
ed

 in
 b

o
ld

 t
ex

t.

d
f

 =
 1

, 
1
4

 f
o
r 

in
d
iv

id
ua

l t
er

p
en

e 
p

ro
p

o
rt

io
ns

.

d
f

 =
 1

, 
1
3
 f
o
r 

al
l p

o
lli

na
to

rs
 (

ca
ry

o
p
hy

lle
ne

),
 H

ym
en

o
p
te

ra
 (

ca
ry

o
p
hy

lle
ne

, 
γ-

el
em

en
e)

, 
D

ip
te

ra
 (

α
-p

in
en

e,
 β

-p
in

en
e,

 c
ar

yo
p

hy
lle

ne
, 
az

ul
en

e,
 le

d
en

e 
o

xi
d

e)
, 
L

ep
id

o
p
te

ra
 (

az
ul

en
e)

,

A
. 
m

el
li
fe

ra
 (

ca
ry

o
p
hy

lle
ne

, 
γ-

el
em

en
e,

 le
d
en

e 
o
xi

d
e)

, 
B

. 
im

p
at

ie
ns

 (
ge

rm
ac

re
ne

-D
, 

az
ul

en
e)

, 
d

o
m

in
an

t 
p

o
lli

na
to

rs
 (

ca
ry

o
p

hy
lle

ne
, 
az

ul
en

e,
 γ

-e
le

m
en

e,
 le

d
en

e 
o

xi
d

e)
, 
an

d
 S

yr
p
hi

d
ae

(a
zu

le
ne

).

*
A

 B
o
nf

er
ro

ni
 c

o
rr

ec
tio

n 
w

o
ul

d
 s

et
 s

ig
ni

fic
an

ce
 o

f 
P

 t
o
 0

.0
0

4
2

.

A
ll 

P
o

lli
na

to
rs

H
ym

en
o
p

te
ra

D
ip

te
ra

C
o

le
o

p
te

ra
L

ep
id

o
p
te

ra
A

. 
m

el
li
fe

ra
B

. 
im

p
a
ti

en
s

D
o

m
in

an
t 

T
ab

le
 8

. 
T

he
 P

 v
al

ue
*

, 
r

2
 a

nd
 d

f
 (

L
in

ea
r 

R
eg

re
ss

io
n,

 J
M

P
 1

2
) 

fo
r 

to
ta

l p
o

lli
na

to
r 

ab
un

d
an

ce
 a

nd
 in

d
iv

id
ua

l t
er

p
en

e 
p

ro
p

o
rt

io
ns

.



48 
 

 
 

Fig. 19. Linear regressions between total abundance for all pollinators and individual terpene 

proportions. 
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Fig. 20. Linear regressions between total abundance and Orders Hymenoptera (solid line), 

Diptera, Lepidoptera (broken line), and Coleoptera (dotted line) and individual terpene 

proportions. 
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Fig. 21. Linear regressions of total abundance for A. mellifera (solid line), B. impatiens 

(broken line), and dominant pollinators (dotted line) and individual terpene proportions. 
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 The mean abundance of all pollinators was marginally related to camphene 

concentration and significantly related to both -pinene and bicyclo(4.4.0)dec-5 

concentrations (Table 9, Figure 22A, 22B, 22F). Noteworthy is the negative relationship 

between abundance and these three compounds, indicating that as these compounds increase 

in concentration, pollinator abundance declines. The mean abundance of Order Hymenoptera 

was related to both -pinene and bicyclo(4.4.0)dec-5 concentrations (Table 9, Figure 23A, 

23D). The mean abundance of Order Diptera was significantly related to azulene 

concentration (Table 9, Figure 23C), while the mean abundances of Orders Coleoptera and 

Lepidoptera were unrelated to individual terpene concentrations (Table 9). The mean 

abundance of A. mellifera was marginally related to -pinene concentration, with a 

significant relationship with bicyclo(4.4.0)dec-5 concentration observed (Table 9, Figure 

24A, 24F). The mean abundance of B. impatiens was marginally related to camphene 

concentration (Table 9, Figure 24B). For dominant pollinators the mean abundance was 

marginally related to both -pinene and -phellandrene concentrations, with a significant 

relationship with bicyclo(4.4.0)dec-5 concentration (Table 9, Figure 24A, 24C, 24F). The 

mean abundance of family Syrphidae was marginally related to -elemene concentration 

(Table 9, data not shown).
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Fig. 22. Linear regressions of mean abundance for all pollinators and individual terpene 

concentrations. 
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Fig. 23. Linear regressions of mean abundance for Orders Hymenoptera (solid line), Diptera 

(dashed line), Lepidoptera, and Coleoptera and individual terpene concentrations. 
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Fig. 24. Linear regressions of mean abundance for A. mellifera (solid line), B. impatiens 

(dashed line), and dominant pollinators (dotted line) and individual terpene concentrations. 
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The mean abundance of all pollinators was marginally related to both camphene and 

bicyclo(4.4.0)dec-5 proportions, with a significant relationship with p-cymene proportion 

(Table 10, Figure 25B, 25D, 25F). The mean abundance of order Hymenoptera was 

marginally related to both -elemene and bicyclo(4.4.0)dec-5 proportions, with a significant 

relationship with p-cymene proportion (Table 10, Figure 26D-F). The mean abundance of 

order Diptera was shown to have no statistically significant relationships with any individual 

terpene proportions (Table 10). The mean abundance of order Coleoptera was marginally 

related to both camphene and p-cymene proportions (Table 10, figure 26B, 26D). The mean 

abundance of order Lepidoptera was marginally related to both -pinene and camphene 

proportions, with a significant relationship with -pinene proportion (Table 10, Figure 26A-

C). The mean abundance of A. mellifera was marginally related to -elemene proportion, 

with a significant relationship with p-cymene proportion (Table 10, Figure 27D-E). The 

mean abundance of B. impatiens was shown to have no significant relationships with any 

individual terpene proportions (Table 10). The mean abundance of dominant pollinators was 

significantly related to both p-cymene and -elemene proportions (Table 10, Figure 27D-E). 

The mean abundance of family Syrphidae was shown to have no significant relationships 

with individual terpene proportions (Table 10).



57 
 

 

 

T
er

p
en

e
p

r
2

p
r

2
p

r
2

p
r

2
p

r
2

p
r

2
p

r
2

p
r

2

α
-p

in
en

e
0
.1

3
4

0
.1

5
3

0
.1

8
2

0
.1

2
4

0
.1

8
2

0
.1

3
3

0
.2

6
4

0
.0

8
8

0
.0

7
2

0
.2

1
2

0
.3

8
0

0
.0

5
6

0
.4

0
6

0
.0

5
0

0
.2

5
8

0
.0

9
0

C
am

p
he

ne
0
.0

7
2

0
.2

1
3

0
.1

2
8

0
.1

5
8

0
.9

4
2

0
.0

0
0

0
.0

5
9

0
.2

3
2

0
.0

5
2

0
.2

4
3

0
.4

5
9

0
.0

4
0

0
.2

1
7

0
.1

0
7

0
.1

9
3

0
.1

1
8

β
-p

in
en

e
0
.1

9
7

0
.1

1
6

0
.1

7
1

0
.1

2
9

0
.3

4
3

0
.0

6
4

0
.1

5
5

0
.1

3
9

0
.0

3
2

0
.2

8
7

0
.2

6
8

0
.0

8
7

0
.4

2
2

0
.0

5
0

0
.1

5
5

0
.1

3
9

α
-p

he
lla

nd
re

ne
0
.4

1
9

0
.0

4
7

0
.4

1
4

0
.0

4
8

0
.4

8
1

0
.0

3
6

0
.4

9
2

0
.0

3
4

0
.7

3
3

0
.0

0
9

0
.2

9
8

0
.0

7
7

0
.2

6
3

0
.0

8
9

0
.1

9
6

0
.1

1
7

P
-c

ym
en

e
0
.0

4
1

0
.2

6
6

0
.0

4
1

0
.2

6
5

0
.9

4
3

0
.0

0
0

0
.0

7
6

0
.2

0
7

0
.3

9
7

0
.0

5
2

0
.0

4
4

0
.2

6
0

0
.3

0
7

0
.0

7
4

0
.0

3
2

0
.2

8
8

β
-e

le
m

en
e

0
.6

9
1

0
.0

1
2

0
.7

6
0

0
.0

0
7

0
.4

9
2

0
.0

3
4

0
.1

5
7

0
.1

3
8

0
.8

2
0

0
.0

0
4

0
.8

3
7

0
.0

0
3

0
.8

8
1

0
.0

0
2

0
.9

7
7

0
.0

0
0

C
ar

yo
p

hy
lle

ne
0
.3

3
8

0
.0

7
1

0
.3

0
3

0
.0

8
1

0
.8

9
2

0
.0

0
2

0
.4

2
9

0
.0

4
5

0
.6

1
3

0
.0

1
9

0
.1

9
2

0
.1

2
7

0
.3

2
9

0
.0

6
8

0
.1

4
6

0
.1

5
5

G
er

m
ac

re
ne

-D
0
.4

4
4

0
.0

4
3

0
.2

9
9

0
.0

7
7

0
.3

0
8

0
.0

7
4

0
.1

5
1

0
.1

4
1

0
.7

4
9

0
.0

0
8

0
.1

3
5

0
.1

5
3

0
.4

6
4

0
.0

4
2

0
.1

7
7

0
.1

2
6

A
zu

le
ne

0
.4

8
4

0
.0

3
6

0
.4

3
6

0
.0

4
4

0
.4

1
8

0
.0

5
1

0
.9

8
9

0
.0

0
0

0
.3

7
3

0
.0

6
1

0
.3

0
0

0
.0

7
6

0
.1

0
8

0
.1

8
7

0
.5

6
1

0
.0

3
9

γ-
el

em
en

e
0
.3

2
3

0
.0

7
0

0
.0

7
6

0
.2

2
2

0
.8

9
3

0
.0

0
1

0
.7

1
2

0
.0

1
0

0
.1

2
2

0
.1

6
2

0
.0

9
7

0
.1

9
8

0
.1

3
6

0
.1

5
2

0
.0

4
9

0
.2

6
7

L
ed

en
e 

O
xi

d
e

0
.2

6
1

0
.0

8
9

0
.1

8
9

0
.1

2
0

0
.7

7
9

0
.0

0
6

0
.3

5
2

0
.0

6
2

0
.8

4
9

0
.0

0
3

0
.9

7
1

0
.0

0
0

0
.8

4
5

0
.0

0
3

0
.7

8
4

0
.0

0
6

B
ic

yc
lo

(4
.4

.0
)d

ec
-50

.0
6
2

0
.2

2
7

0
.0

6
8

0
.2

1
9

0
.6

6
8

0
.0

1
4

0
.1

1
4

0
.1

6
8

0
.9

7
1

0
.0

0
0

0
.2

0
0

0
.1

1
5

0
.3

7
3

0
.0

5
7

0
.1

1
7

0
.1

6
7

N
o

te
: 

p
 ≤

 0
.0

5
 (

si
gn

ifi
ca

nt
) 

an
d

 p
 ≤

 0
.1

0
 (

m
ar

gi
na

lly
 s

ig
ni

fic
an

t)
 p

re
se

nt
ed

 in
 b

o
ld

 t
ex

t.

d
f

 =
 1

, 
1
4

 f
o

r 
in

d
iv

id
ua

l t
er

p
en

e 
p

ro
p

o
rt

io
ns

.

d
f

 =
 1

, 
1
3

 f
o

r 
al

l p
o

lli
na

to
rs

 (
ca

ry
o

p
hy

lle
ne

),
 H

ym
en

o
p

te
ra

 (
ca

ry
o

p
hy

lle
ne

, 
γ-

el
em

en
e)

, 
D

ip
te

ra
 (

α
-p

in
en

e,
 c

ar
yo

p
hy

lle
ne

, 
az

ul
en

e)
, 

C
o

le
o

p
te

ra
 (

az
ul

en
e)

, 
L

ep
id

o
p
te

ra
 (

az
ul

en
e)

,

A
. 

m
el

li
fe

ra
 (

ca
ry

o
p

hy
lle

ne
, 

γ-
el

em
en

e,
 le

d
en

e 
o

xi
d

e)
, 

B
. 

im
p

a
ti

en
s

 (
β
-p

in
en

e,
 g

er
m

ac
re

ne
-D

, 
le

d
en

e 
o

xi
d

e)
, 

d
o
m

in
an

t 
p

o
lli

na
to

rs
 (

ca
ry

o
p

hy
lle

ne
, 

γ-
el

em
en

e,
 le

d
en

e 
o

xi
d

e)
, 

an
d

S
yr

p
hi

d
ae

 (
az

ul
en

e)
.

*
A

 B
o

nf
er

ro
ni

 c
o

rr
ec

tio
n 

w
o

ul
d

 s
et

 s
ig

ni
fic

an
ce

 o
f 

P
 t
o

 0
.0

0
4
2

.

A
. 

m
el

li
fe

ra
B

. 
im

p
a

ti
en

s
D

o
m

in
an

t 

T
ab

le
 1

0
. 
T

he
 P

 v
al

ue
*

, 
r

2
, 

an
d

 d
f
 (

L
in

ea
r 

R
eg

re
ss

io
n,

 J
M

P
 1

2
) 

fo
r 

m
ea

n 
p

o
lli

na
to

r 
ab

un
d

an
ce

 a
nd

 in
d

iv
id

ua
l t

er
p

en
e 

p
ro

p
o
rt

io
ns

.

A
ll 

P
o

lli
na

to
rs

H
ym

en
o

p
te

ra
D

ip
te

ra
C

o
le

o
p

te
ra

L
ep

id
o

p
te

ra



58 
 

 

 

Fig. 25. Linear regressions of mean abundance for all pollinators and individual terpene 

proportions. 
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Fig. 26. Linear regressions of mean abundance for orders Hymenoptera (solid line), Diptera, 

Coleoptera (broken line) Lepidoptera (dotted line), and individual terpene proportions. 
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Fig. 27. Linear regressions of mean abundance for A. mellifera, B. impatiens, and dominant 

pollinators and individual terpene proportions. 
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 Mean pollinator richness was marginally related to camphene concentration 

(Table 11, Figure 28B), where pollinator richness declined with increasing 

concentration of this compound. Community evenness was marginally related to α-

pinene concentration (Table 11, Figure 30A), with a trend for the the community to 

become more similar as the concentration of α-pinene increased. No other significant 

relationships were found between pollinator richness, adjusted richness, or evenness 

and individual terpene concentrations (Table 11). 

Table 11. The P value*, r2, and df (Linear Regression, JMP 12) for pollinator diversity 

measures and individual terpene concentrations. 

  Richness Adjusted Richness Evenness 

  p r2 p r2 p r2 

α-pinene 0.2151 0.108 0.6290 0.017 0.0836 0.213 

camphene 0.0692 0.217 0.1467 0.144 0.8492 0.003 

β-pinene 0.5538 0.026 0.4654 0.039 0.9996 0.000 

α-phellandrene 0.6468 0.015 0.1514 0.152 0.1954 0.125 

p-cymene 0.9164 0.001 0.2366 0.098 0.4111 0.049 

β-elemene 0.9905 0.000 0.8752 0.002 0.7764 0.006 

caryophyllene 0.7544 0.007 0.6076 0.019 0.638 0.016 

germacrene-D 0.6876 0.012 0.9155 0.001 0.7736 0.006 

azulene 0.8105 0.004 0.1637 0.144 0.1701 0.140 

γ-elemene 0.4687 0.038 0.3599 0.060 0.6273 0.017 

ledene oxide 0.5290 0.029 0.7831 0.006 0.6831 0.012 

bicyclo(4.4.0)dec-5 0.2491 0.094 0.7115 0.010 0.5904 0.021 

Note: p ≤ 0.10 (marginally significant) presented in bold text. 

df = 1,14 for individual terpene concentrations and pollinator richness, adjusted richness, and 

evenness. 

df = 1,13 for α-pinene and evenness, α-phellandrene and adjusted richness, α-phellandrene 

and evenness, azulene and adjusted richness, and azulene and evenness. 

*A Bonferonni correction would set significance of P at 0.0042. 
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Fig. 28. Linear regressions of pollinator mean richness and α-pinene (A), camphene (B), 

β-pinene (C), germacrene-D (D), azulene (E), and bicyclo(4.4.0)dec-5 (F). 
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Fig. 29. Linear regressions of pollinator mean adjusted richness and α-pinene (A), 

camphene (B), β-pinene (C), germacrene-D (D), azulene (E), and bicyclo(4.4.0)dec-5 (F). 
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Fig. 30. Linear regressions of pollinator mean evenness and α-pinene (A), camphene 

(B), β-pinene (C), germacrene-D (D), azulene (E), and bicyclo(4.4.0)dec-5 (F). 
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Four significant relationships were found between soil nutrient content and the 

pollinator community measures. Pollinator richness is significantly related to soil 

carbon (mg/g) (Table 12, Figure 31B). Pollinator adjusted richness is significantly 

related to all 3 measures: soil nitrogen (mg/g), carbon (mg/g), and carbon to nitrogen 

ratio (Table 12, Figure 31A, C, D). The concentration of one terpene, ledene oxide, was 

marginally related to soil carbon to nitrogen ratio (Table 13). 

Table 12. The P value*, r2, and df (Linear Regression, JMP 12) for pollinator community 

measures and soil nutrient measures. 

 Nitrogen 

g/mg soil 

Carbon 

g/mg soil 

C:N 

 p r2 p r2 p r2 

Abundance 0.883 0.002 0.943 0.000 0.658 0.014 

Richness 0.100 0.181 0.092 0.189 0.428 0.046 

Adjusted Richness 0.008 0.407 0.011 0.384 0.081 0.201 

Evenness 0.123 0.161 0.184 0.122 0.334 0.067 

Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in bold text. 

df = 1,14. 

*A Bonferroni correction would set significance of P at 0.012. 
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Fig. 31. Linear regressions of pollinator community measures and soil nutrient measures for 

adjusted richness and nitrogen (mg/g) (A), richness and carbon (mg/g) (B), adjusted richness 

and carbon (mg/g) (C), and adjusted richness and C:N (D). 
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Table 13. The P value*, r2, and df (Linear Regression, JMP 12) 

between soil nitrogen and carbon to nitrogen ratio for individual 

terpene concentrations. 

 Nitrogen 

g/mg soil 

C:N 

 p r2 p r2 

α-pinene (mg/g) 0.598 0.020 0.681 0.012 

camphene 0.249 0.094 0.630 0.017 

β-pinene 0.389 0.053 0.751 0.007 

α-phellandrene 0.989 0.000 0.120 0.164 

p-cymene 0.787 0.005 0.921 0.001 

β-elemene 0.510 0.032 0.429 0.045 

caryophyllene 0.426 0.046 0.134 0.153 

germacrene-D 0.111 0.171 0.224 0.104 

azulene 0.885 0.002 0.458 0.040 

γ-elemene 0.819 0.004 0.743 0.008 

ledene oxide 0.174 0.128 0.078 0.206 

bicyclo (4.4.0) dec-

5 

0.773 0.006 0.711 0.010 

Note: p ≤ 0.05 (significant) and p ≤ 0.10 (marginally significant) presented in  

bold text. 

df = 1,14. 

*A Bonferroni correction would set significance of P at 0.0042. 

 

 

 

 

 

 

 

 

 

 

 



68 
 

 

Partial Least Squares Regression 

 I used the multivariate technique Partial Least Squares Regression (PLSR) to model 

pollinator abundance in relation to terpenes. In order to build the most appropriate and robust 

model, only pollinator measures with substantial abundance within and between plots were 

used. These included: total pollinator abundance, mean pollinator abundance, A. mellifera 

abundance, B. impatiens abundance, and dominant pollinators (A. mellifera and B. impatiens) 

abundance. For each measure a significant relationship between abundance and terpenes was 

observed. (Table 14, Figure 32 A-E). Terpenes explained 45% of the variation in both total 

and mean pollinator abundance (all pollinators observed) (Table 14) and over half of the 

variation in abundance for A. mellifera and dominant pollinators. Because genotypes varied 

in terpene concentrations and proportions, these results suggest that terpenes seem to 

contribute to the observed responses of the pollinators in my study. 

Table 14. The P value, F ratio, and r2 (Partial Least Squares Regression, JMP Pro 10) for 

total abundance, mean abundance, Apis mellifera, Bombus impatiens, and dominant 

pollinators. 

 p F r2 

Total Abundance 0.0064 10.53 0.447 

Mean Abundance 0.0064 10.51 0.447 

Apis mellifera 0.0014 16.28 0.560 

Bombus impatiens 0.0192   6.70 0.333 

Dominant 

Pollinators 
0.0016 15.78 0.548 

Note: p ≤ 0.05 (significant) presented in bold text. 

df=1,13 for total abundance, mean abundance, Apis mellifera, and dominant pollinators; 

df=1,14 for Bombus impatiens. 
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Fig. 32. Partial Least Squares Regression (PLSR) of total abundance (A) mean abundance, 

(B) Apis mellifera, (C) Bombus impatiens (D) and dominant pollinators (E). 
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Our PLSR model demonstrates statistically significant relationships between the 

pollinator community and terpenes, such that terpene variation explained 36-46% of the 

variation in pollinator richness, adjusted richness, and evenness (Table 15). The actual values 

pulled from our community data are strongly related to the predicted values from our PLSR 

model, indicating that terpenes are predictors of the associated insect pollinator community 

of S. altissima (Figure 33A-C).  

Table 15. The P value, F ratio, and r2 (Partial Least Squares Regression, JMP Pro 10) for 

pollinator diversity measures. 

 p F r2 

Richness 0.0135   7.97 0.363 

Adjusted Richness 0.0036 12.14 0.464 

Evenness 0.0061 10.42 0.426 

Note: p ≤ 0.05 (significant) presented in bold text. 

df=1,15 for richness and adjusted richness; df=1,14 for evenness. 
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Fig. 33. Partial Least Squares Regression (PLSR) between the pollinator 

community and terpenes: richness (A), adjusted richness (B), and 

evenness (C).
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DISCUSSION 

Solidago altissima exhibits considerable intraspecific genetic variation, including in 

traits such as flowering phenology and floral production (Gross and Werner 1983; Genung et 

al. 2012b; Burkle et al. 2013) and ecosystem processes such as above- and belowground 

productivity (Crutsinger et al. 2006; Breza et al. 2012). Several studies have reported the 

effects that this variation has on the arthropod community of S. altissima and other 

foundation plant species (Crutsinger et al 2006; Genung et al. 2012b), but the importance of 

intraspecific genetic variation in this species with respect to floral phytochemistry and its 

impact on associated pollinators remains largely unexplored. The goal of my observation 

field study was to determine if relationships existed between flower phytochemistry 

(terpenes) and the insect pollinator community among genotypes of S. altissima at different 

spatial scales. I investigated presumed plant intraspecific trait variation within and between 

fields so that the role of genetic variation within patches (genetic identity effect) could be 

compared to effects of spatial scale (environment effect). Understanding the role of 

genotypic variation in flower phytochemistry within this plant-pollinator system addresses 

important questions about how terpenes might influence pollinator selection of S. altissima 

genotypes. In addition, my study investigated the possibility that spatial separation of 

genotypes could be a significant contributor to observed pollinator community and 

phytochemistry measures. Though some site effects on chemistry and pollinator abundances 

were observed, by and large my study found that variation at the level of patches (i.e., 

genotypes) was much more important than where they were located. Due to the nature of my
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 experimental design I had to make assumptions about the role of genetic variation, 

though I am very confident in my interpretation of the results. My analysis relating terpenes 

to pollinator measures supports the conclusion that terpenes play a role in genotype choice, 

while site has little influence. 

Though other studies in the field of community genetics have examined the 

importance of the role that plant intraspecific genetic variation might play for insect 

associations (Johnson and Agrawal, 2005; Crutsinger et al. 2006), including for floral visitors 

(Genung et al. 2010; Burkle et al. 2013), specific reasons for genotype choice remain poorly 

understood. Using S. altissima clones, Burkle et al. (2013) found that the effects of host-plant 

genetic variation were more influential in structuring the pollinator community than were 

environmental effects or genotype by environment interactions. I asked if genotype and site 

affect the pollinator community and found that pollinator abundance and diversity were more 

influenced by differences among patches of S. altissima (representing genotypes) than by 

sites where patches were located. This result addresses previous concerns in community 

genetics studies that reported effects of genotypic variation on arthropod communities do not 

sufficiently consider the potential for spatial variation when drawing conclusions on the 

importance of genetic variation (Tack and Roslin 2011; Tack et al. 2012). Studies such as 

these suggest an overall inflation of the importance of host-plant genetic variation in 

structuring communities without considering spatial scale (environment effects). 

Incorporating spatial scale into community genetics studies allows for comparing the relative 

effects of genetic variation and the environment (Stratton and Bennington 1998; Johnson and 

Agrawal 2005). The scale-dependent hypothesis proposes that biotic factors, such as genetic 

variation, are more important in structuring communities at local levels and that abiotic 



74 
 

 

factors become more important at larger spatial scales (Menge and Olson 1990, Jackson et al. 

2001). To address these issues and concerns that have arisen, I used naturally occurring 

populations of S. altissima that ranged from 6km to 16km apart from each other. When 

examining four fields separated by over 6km, I found almost no effect of spatial scale on the 

pollinator community (Table 1, 3). My data support the conclusion that genetic variation (i.e., 

differences between patches as determined by my statistical model) is more important in this 

widespread old-field plant species for pollinators than is the spatial separation of discrete 

patches. I make this conclusion with some caution as I was unable to replicate genotypes in 

my experiment, which would have provided a more robust way to investigate differences. 

While other factors could have contributed to the error term in my ANOVA model, which 

allowed me to make conclusions about genotype, I am confident my data fully support an 

important contribution of trait variation among my patches. My analysis that terpenes varied 

by genotype and not site demonstrated a role for these chemicals in pollinator choice of 

genotypes. 

My study found that, in addition to total and mean abundance measures of pollinating 

species, the species richness of the pollinator community was influenced much more by 

differences among patches than among sites (Table 3). This result was different when 

adjusted richness was calculated, but the marginally significant effect of site in this measure 

still leads to conclusions about the importance of genetic variation in my study. Using 

flowering time and abundance as mechanisms through which pollinators choose host plants, 

Genung et al. (2010) investigated the importance of plant intraspecific genetic variation and 

diversity for the pollinator community. Their results indicated that underlying genetic traits 

in S. altissima, and subsequent genotypic variation in flowering phenology, impacted the 
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abundance and richness of floral communities, but that any impact on pollinator richness was 

indirectly caused by plant traits influencing insect abundance. In a related study comparing 

the effects of genetic identity, genotypic diversity, and nutrient enrichment of S. altissima 

clones, Burkle et al. (2013) found that it was genetic variation that had the strongest effect on 

the floral visitor community. Their findings were largely due to intraspecific variation in the 

time of flowering. My experiment tried to control for genotypic variation in phenology (see 

Materials and Methods), so it seems unlikely my observed differences among patches in the 

pollinator community was due to differing flowering times. Though my data largely show 

variation among S. altissima genotypes rather than the spatial separation of fields affected 

pollinator abundance there were exceptions. For example, insects in the Order Coleoptera, 

which can contain common pollinators, and the eastern carpenter bee, Xylocopa virginica, 

were more influenced by site. It is perhaps not surprising that due to the diversity of the 

pollinator community that spatial effects would be found. But when the most common and 

abundant pollinators are considered (Apis mellifera and Bombus impatiens) patch variation is 

most evident. These are without doubt wide ranging pollinators in Solidago fields and likely 

make choices based on a variety of factors. Bees are known to use floral features including 

color, scent, and texture, when locating host-plants.  

One of the main goals of my study was to investigate the importance of flower 

terpenes as an explanation for pollinator choice of patches. Variation among S. altissima, 

presumed to be largely explained by genotypes, explained much of the variation in pollinator 

abundance and diversity and flower terpene concentration, suggesting that genetically based 

traits such as phytochemistry could influence the insect pollinator community. Previous 

investigations have shown secondary chemicals exhibit variation among genotypes, including 
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tannins (Schweitzer et al. 2004, 2008) and terpenes (Dungey et al 2000; Williams and 

Avakian 2015), and that intraspecific genetic variation in phytochemistry can affect 

associated arthropod communities (Raguso et al. 2007; Johnson et al. 2009; Smith 2015). 

However, no studies relating flower terpenes and pollinators in S. altissima had been 

previously conducted. 

In my study both concentrations and proportions of individual floral terpenes were 

primarily affected by differences among patches rather than site (Table 4-5, Figure 11-14). 

This result shows that differences in where patches are located was less important than 

differences between patches, supporting the conclusion that a genetic identity effect, and not 

an environment effect, occurred. As with abundance and community measures, differences 

among genotypes were greater than among sites for almost all the compounds I quantified. A 

study by Williams and Avakian (2015) that used S. altissima was one of the first to 

demonstrate an effect of host-plant genotype identity and subsequent terpene variation on an 

associated insect. Plant volatile organic compounds are emitted from foliage to deter 

herbivory and from flowers to attract pollinators (Caissard et al. 2004), and floral terpene 

emissions are known to vary among plant species partly due to the diversity in the species 

involved in plant-pollinator interactions (Byers et al. 2014a). Because insects in part rely on 

olfaction when locating host-plants (Chittka and Raine 2006; Milet-Pinheiro et al. 2015), it 

seems plausible that genotype-unique compositions of terpenes and other volatile compounds 

influenced genotype choice in my experiment. For my plants the effects of terpenes could 

have been due to either/or thei presence in nectar or emissions from flowers. My study did 

not allow me to separate the two. In a study by Morse et al. (2012), B. impatiens preferred to 

pollinate tomato flowers that produced less of the terpenes β-phellandrene and careen, thus 
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illustrating the importance of specific compounds. Whatever the perception method, my data 

support the use of some terpenes by pollinators. 

In addition to changes among patches in the amount of terpenes produced, linear 

regression results demonstrated several marginally significant (p ≤ 0.10) and statistically 

significant relationships (p ≤ 0.05) between the abundance of various pollinator or pollinator 

groups and the concentrations and proportions of individual terpenes. Though some of my 

relationships were relatively weak (low r2), these data lend evidence that terpenes could play 

a role in the choice of patches, and therefor genotypes, in my study. In many cases, there 

were similarities in the significance in relationships with certain terpenes among Order 

Hymenoptera, which included A. mellifera, B. impatiens, and dominant pollinators. These 

similarities are likely due to the greater abundance of both A. mellifera and B. impatiens 

compared to other pollinators. For many of the pollinator groups in my study, there were 

particular terpenes that seem to play important roles in attracting or deterring them from host-

plants. The concentrations of -pinene, camphene, -phellandrene, caryophyllene, azulene, 

and bicyclo(4.4.0)dec-5 apparently act as deterrents for pollinators, as pollinator abundance 

declined at higher levels of concentrations (Table 7). Camphene was also negatively 

correlated to pollinator species richness (Figure 28B), yet as α-pinene increased, the 

pollinator community became more evenly represented (evenness closer to 1; Figure 30A). 

Additionally, higher -elemene proportions were associated with decreased abundances of 

bee pollinators, while higher p-cymene proportions seemed to attract bee pollinators to S. 

altissima genotypes. A study that investigated floral scent of six species in family Apiaceae 

found large quantities of species-specific fragrances – some including the terpenes α-pinene 

and β-pinene – which likely act as attractants for insect pollinators (Borg-Karlson et al. 
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1994). In my study there was not clear indication of the role these terpenes played in S. 

altissima, where with some pollinators α-pinene showing a negative relationship and β-

pinene few if any. This is largely supported as well by the exclusion of this compound from 

the VIP factors in my PLSR analysis. It is interesting that separate taxonomic groups varied 

from being significantly related to both terpene concentrations and proportions to either 

terpene concentration or proportion. This variation might suggest differences in how certain 

pollinators perceive compounds, such that an individual terpene may be important to one 

taxonomic group, while a particular suite of terpenes is important for another taxonomic 

group.  

PLSR analyses indicated that suites of compounds extracted from flowers related to 

pollinator abundance and diversity as groups of terpenes accounted for much of the variation 

observed in pollinator abundance and community measures. Because genotypes varied in 

terpene concentrations and proportions, these results suggest that terpenes contribute to the 

observed responses of the pollinators among patches in my study. Similar to previous studies 

(Avakian 2014; Howells 2014; Bonville 2016; Williams and Avakin 2015), that have 

demonstrated the importance of leaf terpenes in explaining the abundance of a specialist 

aphid species, these compounds appear to play a role in pollinator choice of genotypes.  

Though I found few site effects on flower phytochemistry and pollinator abundance 

and diversity measures, there were significant differences in soil nitrogen, carbon, and C:N 

ratio among sites. Previous work with S. altissima found that soil nutrient availability 

affected the associated pollinator community, though the insect responses were much weaker 

than those due to genotype (Burkle et al. 2013). In my study adjusted richness was 

significantly related to each of the three soil measures, and richness was significantly related 
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to soil carbon. But with one exception there were no significant relationships found between 

soil nitrogen or C:N and individual terpene concentrations (Table 13). Although soil nutrient 

content was one of the few measures that significantly varied among sites in my study, the 

lack of significant relationships between soil nutrients and terpenes suggests that site effects 

in nutrients was not reflective of pollinator community responses with respect to terpene 

production and my identified relationships between soil nutrients and community measures 

stems from other factors not accounted for in my study. 

 In conclusion, by focusing on terpenes as a possible explanation for pollinator choice 

of site or genotypes in S. altissima, my study addresses previous concerns in community 

genetics research that plant-pollinator interactions have been largely unexplored, including 

for phytochemical explanations with respect to intraspecific genetic variation in a foundation 

plant species. I included a spatial component to tease out the relative importance of genetic 

variation compared to spatial scale and found that what I perceived as genetic variation was 

indeed a stronger influence on the associated insect pollinator community. My results 

somewhat counter previous suggestions that genetic variation effects are inflated at larger 

scales due to the effect of differing environments. Though my data support the role of 

terpenes in the choice of genotypes by pollinators, they could not specifically provide a 

mechanism and direct comparison among genotypes for observed differences among patches 

in pollinator abundance, richness, and community evenness. Even so, my study is strongly 

suggestive that further studies, including experiments designed to examine pollinator species 

preferences for terpenes, are warranted. 
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APPENDICES 

Appendix 1 

GPS Coordinates of Patches 

State Farm Coordinates (N) Coordinates (W) Elevation (m) 

Patch 1 36.20???° 081.64???° 946 

Patch 2 36.20913° 081.64898° 944 

Patch 3 36.20890° 081.64855° 947 

Patch 4 36.20876° 081.64801° 942 

 

Tom Jackson Coordinates (N) Coordinates (W) Elevation (m) 

Patch 1 36.26632° 081.61517° 1001 

Patch 2 36.26665° 081.61482° 1009 

Patch 3 36.26671° 081.61525° 1011 

Patch 4 36.26667° 081.61567° 1007 

 

US 421 Coordinates (N) Coordinates (W) Elevation (m) 

Patch 1 36.23735° 081.74656° 887 

Patch 2 36.23756° 081.74718° 887 

Patch 3 36.23822° 081.74590° 893 

Patch 4 36.23774° 081.74622° 891 
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Appendix 2 

Mass of flowers used for terpene extraction 

State Farm Mass (g) Tom Jackson Mass (g) 

Sample 1-1 2.0405 Sample 1-1 2.0174 

Sample 1-2 2.0083 Sample 1-2 2.0450 

Sample 1-3 2.0511 Sample 1-3 2.0263 

Sample 1-4 2.0204 Sample 1-4 2.0402 

Sample 1-5 2.0245 Sample 1-5 2.0344 

Sample 2-1 2.0199 Sample 2-1 2.0369 

Sample 2-2 2.0185 Sample 2-2 2.0336 

Sample 2-3 2.0150 Sample 2-3 2.0596 

Sample 2-4 2.0161 Sample 2-4 2.0139 

Sample 2-5 2.0136 Sample 2-5 2.0064 

Sample 3-1 2.0348 Sample 3-1 2.0359 

Sample 3-2 2.0449 Sample 3-2 2.0278 

Sample 3-3 2.0146 Sample 3-3 2.1193 

Sample 3-4 2.0128 Sample 3-4 2.0635 

Sample 3-5 2.0548 Sample 3-5 2.0938 

Sample 4-1 2.0627 Sample 4-1 2.0424 

Sample 4-2 2.0368 Sample 4-2 1.9840 

Sample 4-3 2.0336 Sample 4-3 2.0146 

Sample 4-4 2.0301 Sample 4-4 2.0281 

Sample 4-5 2.0399 Sample 4-5 2.0451 

Parkway Mass (g) US 421 Mass (g) 

Sample 1-1 2.0301 Sample 1-1 2.3321 

Sample 1-2 2.0212 Sample 1-2 2.0805 
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Sample 1-3 1.9372 Sample 1-3 2.1877 

Sample 1-4 2.0212 Sample 1-4 2.0331 

Sample 1-5 2.1321 Sample 1-5 2.0558 

Sample 2-1 2.0534 Sample 2-1 2.2365 

Sample 2-2 2.0325 Sample 2-2 2.2880 

Sample 2-3 2.0036 Sample 2-3 2.2997 

Sample 2-4 2.1830 Sample 2-4 2.2806 

Sample 2-5 2.0773 Sample 2-5 2.1343 

Sample 3-1 2.0730 Sample 3-1 2.2349 

Sample 3-2 2.1051 Sample 3-2 2.1163 

Sample 3-3 2.0294 Sample 3-3 1.9558 

Sample 3-4 2.2350 Sample 3-4 2.2685 

Sample 3-5 2.2585 Sample 3-5 2.1158 

Sample 4-1 2.0405 Sample 4-1 2.0615 

Sample 4-2 2.0744 Sample 4-2 2.1444 

Sample 4-3 1.9189 Sample 4-3 2.0811 

Sample 4-4 2.1037 Sample 4-4 2.2239 

Sample 4-5 2.0350 Sample 4-5 2.0286 
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Appendix 3 

Percentage difference in individual terpene concentration between S. altissima flowers and 

calyces. 
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